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The approach to the Onsager-Casimir reciprocity relations based on the linearized
Boltzmann equation and gas-surface interaction law regarding kinetic coefficients which
are neither odd nor even with respect to time reversal is applied to gaseous mixtures.
As an example, the slip velocity problem is considered. It is shown that using the
reciprocal relations the viscous, thermal and diffuse slip coefficients can be calculated
simultaneously solving a unique kinetic coefficient.
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1. INTRODUCTION

In the previous papers(1–3) an approach to the Onsager-Casimir Reciprocal Rela-
tions (OCRR) based on the Boltzmann equation and gas-surface interaction law in
its general form was developed. This approach was generalized for gas interacting
with a radiation,(4) for rotating systems,(5) and for gas in the presence of magnetic
field.(6) In all these works it was assumed that thermodynamic forces were odd or
even with respect to time reversal. Such an assumption is valid in many applica-
tions that is why the OCRR were successfully used in practical calculations,(7–13)

namely, the reciprocal relations reduced the computational efforts or they were
used as an additional criterion of numerical accuracy.

Let us remind briefly what do the OCRR express. If we consider weakly
non-equilibrium irreversible processes, then the corresponding physical laws can

1 Departamento de Fı́sica, Universidade Federal do Paraná, Caixa Postal 19044, 81531-990, Curitiba,
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be described in a general linear form as

Jk =
N∑

n=1

�kn Xn, (1)

where Xk are thermodynamics forces, Jk are conjugated thermodynamics fluxes
and �kn are the kinetic coefficients. If the set of the thermodynamic fluxes Jk is
chosen so that the entropy production in the statistical system is expressed as the
sum

σ =
N∑

k=1

Jk Xk, (2)

then the Onsager-Casimir theorem establishes the following relations between the
kinetic coefficients

�kn = εkεn�nk, (3)

where εk = ±1 depending on whether the corresponding force Xk changes its own
sign at time reversal or it does not.

However, an attempt to apply the formalism of Refs. 1–3 to half-space prob-
lems failed. Particularly, the relation between surface heat flux and thermal slip
coefficient obtained in Ref. 14 from some physical reasonings cannot be deduced
directly from the OCRR in the form (3), because in this case the thermodynamic
forces are neither odd nor even with respect to time reversal. In the recent work(15)

the OCRR were obtained without any assumption about the parity of the forces,
i.e., the thermodynamic forces contain both odd and even parts and the OCRR are
written as

�t
kn = �t

nk, (4)

where the superscript t means the time reversed kinetic coefficient. This form of
the OCRR became applicable for the half-space problems and also for any other
situation where the thermodynamic forces are neither odd nor even functions of
time. Thus, it was shown that the reversibility of the gas-gas and gas-surface inter-
actions is a necessary and sufficient condition to derive the OCRR in the linearized
form. No additional assumptions like those made in Refs. 1–3 are necessary. The
derivations in Ref. 15 are restricted to a single gas. However, irreversible processes
in gaseous mixtures are more complex because a concentration non-uniformity
causes new phenomena.

The aim of the present paper is to apply the generalized approach developed
in the previous paper(15) to gaseous mixtures and to show peculiarities of gaseous
systems composed by several species. As an example of application of the present
theory the velocity slip problem in mixtures will be considered.
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2. BASIC EQUATIONS

We consider a steady state of weakly disturbed gaseous mixture consisting
of M non-reactive components and occupying a region �. Let fi = fi (r, �i ) be
distribution functions of species i which obey the system of coupled Boltzmann
equations.(16,17) Here, r ∈ � is the position vector and �i is a set of variables
describing a state of every particle, i.e. translational velocity of particles vi , ro-
tational velocity if the gas is polyatomic, quantum state of molecules, etc. We
consider only stationary states of the system so that the distribution functions do
not depend on the time.

The basic properties of the full Boltzmann equation and gas-surface inter-
action law for a gaseous mixture are given in the papers(3) where the reader can
find all details about the linearization. Here we will start from the system of the
linearized Boltzmann equations, which reads

D̂i h − L̂ i h = gi (r, �i ), 1 ≤ i ≤ M, (5)

where

D̂i h = vi · ∂hi

∂r
+ �̇i

∂hi

∂�i
, (6)

L̂ i is the linearized collision operator defined by Eq. (25) of Ref. 3, which takes
into account collisions of species i with itself and with all other species, h without
the subscript means the vector of the perturbations hi = hi (r, �i ) (1 ≤ i ≤ M) de-
termining the deviation of distribution functions of species i from the Maxwellian
f 0
i , i.e.

fi (r, �i ) = f 0
i (r, �i ) [1 + hi (r, �i )] , |hi | � 1, (7)

f 0
i (r, �i ) = n0i�i (T0) exp

[
− Ii (ξi )

kT0
− mi (vi − u0)2

2kT0

]
, (8)

�i (T ) =
[∫

exp

(
− Ei (�i )

kT

)
d�i

]−1

, (9)

Ei (�i ) = Ii (ξi ) + 1

2
miv

2
i , (10)

Ei (�i ) is the full molecular energy, Ii (ξi ) is the inner molecular energy determined
by the variables ξi , i.e. �i = (vi , ξi ), mi is the molecular mass of species i , k is the
Boltzmann constant. The hydrodynamic velocity of the mixture appearing in Eq.
(8) is defined as

u = 1

	

M∑

i=1

ni mi ui, 	 =
M∑

i=1

ni mi , (11)
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where ni and ui are number density and mean velocity of species i , respectively,

ni =
∫

fi d�i , ui = 1

ni

∫
fi vi d�i . (12)

If the linearization is realized near the absolute Maxwellian, then the number
densities n0i and temperature T0 are constant, while the hydrodynamic velocity
of the mixture u0 is zero. The linearization can be made also near the local
Maxwellian. Then, the densities n0i , temperature T0 and velocity u0 are assumed
to be functions of the space coordinates r. In this case, the source function gi (r, �i )
appears in the form

gi (r, �i ) = −vi · ∂ ln f 0
i

∂r
. (13)

Usually, the functions n0i (r), T0(r), and u0(r) are chosen so as to reduce the
computational efforts to solve the kinetic equation system (5).

On a solid wall restricting the mixture flow the linearized boundary condition
reads

h+
i = Âi h

−
i + hwi − Âi hwi , (14)

where Âi is the scattering operator, which can be different for each species. Its
definition and main properties are given in Refs. 1, 15. h−

i is the perturbation of
incident particles of species i , h+

i is the perturbation of reflected particles of the
same species, hwi is the perturbation of the surface Maxwellian fwi of the species
i , which has the expression (8) with the temperature Tw and velocity uw of the
solid wall instead of T0 and u0, respectively. If the wall evaporates and condenses
the species i , then fwi contains the number density of the evaporated gas nwi

instead of n0i .
The following scalar products introduced in the work(3) will be used here

〈φi , ψi 〉 =
∫

f 0
i φi (r, �i )ψi (r, �i ) d�i , (15)

[φi , ψi ] =
∫

�

〈φi , ψi 〉 dr, (16)

(φ,ψ) =
M∑

i=1

〈φi , ψi 〉, (17)

((φ,ψ)) =
M∑

i=1

[φi , ψi ] =
∫

�

(φ,ψ) dr, (18)



Onsager-Casimir Reciprocal Relations Based on the Boltzmann Equation 665

where φi and ψi are some functions of r and �i . We also will use the time reversal
operator

T̂ φi (r, �i ) = φi

(
r, �t

i

)
, (19)

where the superscript t means a time reversed molecule state, in which all odd
variables of time, like translational or rotational velocities, change their own sign,
while even variables maintain their own sign.

As was shown in the work(3) the operators L̂ i satisfy the following equality

((T̂ L̂φ,ψ)) = ((T̂ L̂ψ, φ)), (20)

which is a consequence of the reversibility of the intermolecular interaction.
Every species interacts with a surface independently on each other. That is

why the derivations related to the operator Âi are exactly the same as those for a
single gas. Thus, if one repeats the derivations from Eq. (21) to Eq. (26) of Ref. 15
for every species of the mixture one obtains

[T̂ D̂iφ,ψi ] +
∫

�w

〈T̂ vniφwi , ψi 〉 d� + 1

2

∫

�g

〈T̂ vniφi , ψi 〉 d�

= [T̂ D̂iψ, φi ] +
∫

�w

〈T̂ vniψwi , φi 〉 d� + 1

2

∫

�g

〈T̂ vniψi , φi 〉 d�, (21)

where �w is the surface of solid wall restricting the region �, and �g is a surface
crossing the mixture and introduced so as the total surface �w ⊕ �g is closed.
Note, in these derivations the time reversibility property of the operator Âi is used.

Summing (21) over all species we have the following equality for the mixture

((T̂ D̂φ,ψ)) +
∫

�w

(T̂ vnφw,ψ) d� + 1

2

∫

�g

(T̂ vnφ,ψ) d�

= ((T̂ D̂ψ, φ)) +
∫

�w

(T̂ vnψw, φ) d� + 1

2

∫

�g

(T̂ vnψ, φ) d�. (22)

It should be noted that the following derivations of the OCRR are based
only on Eqs. (20) and (22), which are necessary and sufficient. No additional
assumption is needed to prove the OCRR.

3. ENTROPY PRODUCTION

Like for a single gas the entropy production of a mixture consists of the two
parts: production due to the intermolecular collisions given as, see Eq. (52) of
Ref. 3

σcoll = −((L̂h, h)), (23)
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and production due to the gas-surface interaction. For each species this part is
given by Eq. (28) of Ref. 15, i.e.

σwi = [D̂i h, hi ] +
∫

�w

〈vni hwi , hi 〉 d� + 1

2

∫

�g

〈vni hi , hi 〉 d�. (24)

Then, summing this expression over all species we obtain

σw =
M∑

i=1

σwi = ((D̂h, h)) +
∫

�w

(vnhw, h) d� + 1

2

∫

�g

(vnh, h) d�. (25)

So that, the total entropy production reads

σ = σcoll + σw = ((g, h)) +
∫

�w

(vnhw, h) d� + 1

2

∫

�g

(vnh, h) d�, (26)

where Eq. (5) has been used. As was shown in Ref. 1 both σcoll and σwi are always
positive, hence σ is positive too.

4. DEFINITION OF THE KINETIC COEFFICIENTS

If a set of the small parameters Xk is used to linearize the system of the
Boltzmann equations then the functions gi (r, �i ), hwi (r, �i ), and the solution
hi (r, �i ) can be written as the following linear combinations

gi (r, �i ) =
N∑

k=1

g(k)
i (r, �i )Xk, (27)

hwi (r, �i ) =
N∑

k=1

h(k)
wi (r, �i )Xk, (28)

hi (r, �i ) =
N∑

k=1

h(k)
i (r, �i )Xk, (29)

where 1 ≤ i ≤ M . With the help of Eqs. (26–29) it can be shown that the thermo-
dynamic fluxes and kinetic coefficients have exactly the same expression as those
for a single gas considering that the scalar products (,) and ((,)) for a mixture imply
the summation over all species, i.e.

Jk = ((
g(k), h

)) +
∫

�w

(
vnh(k)

w , h
)

d� + 1

2

∫

�g

(
vnh(k), h

)
d�. (30)

�kn = ((
g(k), h(n)

)) +
∫

�w

(
vnh(k)

w , h(n)
)

d� + 1

2

∫

�g

(
vnh(k), h(n)

)
d�. (31)
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If we introduce the time reversed kinetic coefficients as

�t
kn = ((

T̂ g(k), h(n)
)) +

∫

�w

(
T̂ vnh(k)

w , h(n)
)

d�

+1

2

∫

�g

(
T̂ vnh(k), h(n)

)
d�, (32)

then the OCRR in the form (4) are easily proved

�t
kn = −((

T̂ L̂h(k), h(n)
)) + ((

T̂ D̂h(k), h(n)
))

+
∫

�w

(
T̂ vnh(k)

w , h(n)
)

d� + 1

2

∫

�g

(
T̂ vnh(k), h(n)

)
d�

= −((
T̂ L̂h(n), h(k)

)) + ((
T̂ D̂h(n), h(k)

))

+
∫

�w

(
T̂ vnh(n)

w , h(k)
)

d� + 1

2

∫

�g

(
T̂ vnh(n), h(k)

)
d� = �t

nk, (33)

where Eqs. (5), (20), and (22) have been used.

5. VELOCITY SLIP PROBLEM

In this section, an example of how to apply the above presented formalism
is given. Namely, we consider the problem of the velocity slip coefficients for
a binary gaseous mixture. If a gaseous mixture flows over a solid surface its
tangential velocity is not equal to zero at the surface but it is determined by the
viscous, thermal and diffusion slip coefficients, i.e.

uy = σP

µ

P

(
2kT

m

)1/2
∂uy

∂x
+ σT

µ

	

∂ ln T

∂y
+ σC

µ

	

∂ ln C

∂y
, at x = 0, (34)

where x is the coordinate normal to the surface, y is the tangential coordinate, µ is
the stress viscosity of the mixture, P is its local pressure, T is its local temperature,
C is a local molar concentration defined as

C = n1

n1 + n2
, (35)

	 is a local mass density of the mixture, m is the mean molecular mass of the
mixture given as

m = Cm1 + (1 − C)m2. (36)

The dimensionless quantities σP, σT and σC are the viscous, thermal and
diffusion slip coefficients, respectively.

To calculate the slip coefficients the system of the kinetic Boltzmann equa-
tions (5) is employed in the Knudsen layer adjacent to a solid surface and having
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the thickness of the order of the molecular mean free path. Thus, we consider
a binary gaseous mixture occupying a semi-infinite space x ≥ 0 and subject to
three thermodynamic forces: normal gradient of the tangential velocity Xu , lon-
gitudinal temperature gradient XT and longitudinal concentration gradient XC. In
other words, we assume that far from the surface the hydrodynamic velocity of
the mixture has a linear distribution, i.e.

uy(x) → u0y(x) = Xuvm
x


, at x 
 , (37)

while its temperature and concentration have the following distributions over the
whole space

T0(y) = Teq

[
1 + XT

y



]
, (38)

C0(y) = Ceq

[
1 + XC

y



]
, (39)

where Teq and Ceq are equilibrium temperature and concentration, respectively, 

is the equivalent mean free path defined as

 = µvm

P
, vm =

(
2kT0

m

)1/2

, (40)

vm is the characteristic molecular velocity of the mixture, where the mean molec-
ular mass m is calculated by (36) with the equilibrium concentration Ceq . The
densities are distributed so as to maintain the constant pressure over the whole
space, i.e.

n0i = neq,i

(
1 − XT

y


− XC

y


ηi

)
, i = 1, 2, (41)

η1 = 1, η2 = Ceq

Ceq − 1
. (42)

The velocity distribution function of each species can be linearized by the
standard manner using Eq. (7) where the local Maxwellian f 0

i (r, �i ) corresponds
to the state of each species far from the surface, i.e. the temperature T0 is given
by Eq. (38), the densities n0i are given by Eq. (41), the hydrodynamic velocity u0

has the y component only, i.e. u0 = (0, u0y, 0), which is given by Eq. (37).
Since the forces XT, XC and Xu are considered to be small, i.e.

|XT| � 1, |XC| � 1, |Xu | � 1, (43)

the source functions calculated by Eq. (13) are split in accordance with Eq. (27)
where

g(T)
i (�i ) = − vyi

kTeq
E∗

i (44)
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g(C)
i (�i ) = −vyi


ηi , (45)

g(u)
i (�i ) = −2

mi

m

vxivyi

vm
, (46)

where i = 1, 2,

E∗
i = Ei (�i ) − kTeq (θi + 1) , θi = 1

Pi

∫
f 0
i Ei (�i ) d�i , (47)

and Pi are partial pressures.
The temperature and bulk velocity in the Maxwellian (8) at x = 0 are the

same as those of the wall surface. It means that the surface perturbation functions
are zero, i.e.

h(T)
wi = 0, h(C)

wi = 0, h(u)
wi = 0. (48)

The solution hi is decomposed into three independent parts in accordance
with (29)

hi (r, �i ) = h(T)
i (r, �i )XT + h(C)

i (r, �i )XC + h(u)
i (r, �i )Xu . (49)

Far from the surface (x → ∞) the solutions h(k)
i become space homogeneous

and satisfy the equalities

L̂ i h
(k)
∞ = −g(k)

i , i = 1, 2, k = T, C, u. (50)

The asymptotic behavior of the perturbations h(k)
∞i at x → ∞ can be written as

h(T)
∞i (�i ) = σT

mi

m

vyi

vm
+ h(T)

CE,i (�i ), (51)

h(C)
∞i (�i ) = σC

mi

m

vyi

vm
+ h(C)

CE,i (�i ), (52)

h(u)
∞i (�i ) = 2σP

mi

m

vyi

vm
+ h(u)

CE,i (�i ). (53)

The first terms in Eqs. (51–53) appeared due to the tangential bulk velocities
outside of the Knudsen layer satisfying Eq. (34), while the second terms h(T)

CE,i ,

h(C)
CE,i and h(u)

CE,i are the Chapman-Enskog solutions of the linearized Boltzmann
equations(17) in gaseous mixture being at rest, i.e. they satisfy the following equa-
tions

L̂ i h
(k)
CE = −g(k)

i , k = T, C, u. (54)

In general case, we do not know if the solutions h(T)
CE,i , h(C)

CE,i and h(u)
CE,i are odd

or even, but in majority of cases, e.g. monoatomic gases, it is easily shown that
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h(T)
CE,i and h(C)

CE,i are odd functions, while h(u)
CE,i is an even one, i.e.

T̂ h(T)
CE,i (�i ) = −h(T)

CE,i (�i ), (55)

T̂ h(C)
CE,i (�i ) = −h(C)

CE,i (�i ), (56)

T̂ h(u)
CE,i (�i ) = h(u)

CE,i (�i ). (57)

For the problem under question the region of integration � is the one-
dimensional interval [0,∞). Thus, the general expressions of the kinetic coef-
ficients (31) take the form

�kn = ((
g(k), h(n)

)) + 1

2
lim

x→∞
(
vnh(k), h(n)

)

= ((
g(k), h(n)

)) − 1

2

(
vx h(k)

∞ , h(n)
∞

)
, k, n = T, C, u. (58)

where the fact vni = −vxi at x → ∞ has been considered. Here, the scalar product
((,)) means

((φ,ψ)) =
∫ ∞

0
(φ,ψ) dx . (59)

The kinetic coefficients can be expressed via the following moments of the
distribution functions. The mean velocity uyi of species i defined by Eq. (12) can
be written as

uyi = 1

neq,i
〈vyi , hi 〉, i = 1, 2. (60)

The stress tensor of mixture is calculated via the distribution functions as

Pxy =
2∑

i=1

〈mivxivyi , hi 〉 = (mvxvy, h). (61)

The peculiar heat flux q∗
y is calculated as

q∗
y =

2∑

i=1

〈vyi E∗
i , hi 〉 = (vy E∗, h). (62)

Substituting (29) into Eqs. (60–62) we obtain the decomposition of the mo-
ments

uyi =
∑

n

u(n)
yi Xn, Pxy =

∑

n

P (n)
xy Xn, q∗

y =
∑

n

q∗(n)
y Xn, (63)

where n = T, C, u and the quantities u(n)
yi , P (n)

xy , and q∗(n)
y are calculated via the

corresponding perturbations h(n).
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With the help of Eqs. (44–46) we obtain

(
g(T), h(n)

) = − q∗(n)
y

kTeq
, (64)

(
g(C), h(n)

) = −neq,1



(
u(n)

y1 − u(n)
y2

)
, (65)

(
g(u), h(n)

) = − P (n)
xy

 m vm
. (66)

If we introduce the integral heat flux

Q(n)
s =

∫ ∞

0
q∗(n)

y (x) dx (67)

and integral diffusion flux

J (n)
s = neq,1

∫ ∞

0

(
u(u)

y1 − u(u)
y2

)
dx, (68)

then

((
g(T), h(n)

)) = − Q(n)
s

kTeq
, (69)

((
g(C), h(n)

)) = − J (n)
s


. (70)

The quantity Qs is the so-called surface heat flux introduced in Ref. 14.
Analogously, the quantity Js is called the surface diffusion flux, i.e. the diffusion
in the Knudsen layer due to a stress tensor on the solid surface.

According to the Curie principle(18) a vectorial thermodynamic force like XT

and XC cannot cause a tensor thermodynamic flux in an isotropic system, i.e.

P (T)
xy = 0, P (C)

xy = 0 at x → ∞. (71)

Since, P (T)
xy and P (C)

xy are constant over the whole space because of the mo-
mentum conservation law, then we have

((
g(u), h(T)

)) = 0,
((

g(u), h(C)
)) = 0. (72)

Below we will use the equality

(
mvxvy, h(u)

CE

)
=

2∑

i=1

〈
mivxivyi , h(u)

CE,i

〉 = −P, (73)

which follows from Eqs. (37) and (40) and the fact that far from the surface

Pxy = −µ
∂uy

∂x
. (74)
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The coefficients �CT and �TC do not provide any new information besides
that given by Eq. (88) of Ref. 3 and below they will be omitted. Substituting Eqs.
(51)–(53), (69), (70), (72) into (58) and taking into account (73) we obtain the
following expressions for the kinetic coefficients

�uT = σT P

2mvm
− 1

2

(
vx h(T)

CE , h(u)
CE

)
, (75)

�Tu = − Q(u)
s

kTeq
+ σT P

2mvm
− 1

2

(
vx h(u)

CE , h(T)
CE

)
. (76)

�uC = σC P

2mvm
− 1

2

(
vx h(C)

CE , h(u)
CE

)
, (77)

�Cu = − J (u)
s


+ σC P

2mvm
− 1

2

(
vx h(u)

CE , h(C)
CE

)
. (78)

The time inverse kinetic coefficients have the following form

�t
uT = −1

2

(
T̂ vx h(u)

∞ , h(T)
∞

)
= 1

2

(
vx h(u)

CE , h(T)
∞

)

= − σT P

2mvm
+ 1

2

(
vx h(u)

CE , h(T)
CE

)
, (79)

�t
Tu = ((

T̂ g(T), h(u)
)) − 1

2

(
T̂ vx h(T)

∞ , h(u)
∞

)

= −((
g(T), h(u)

)) − 1

2

(
vx h(T)

∞ , h(u)
CE

)

= Qs

kTeq
+ σT P

2mvm
− 1

2

(
vx h(T)

CE , h(u)
CE

)
, (80)

�t
uC = −1

2

(
T̂ vx h(u)

∞ , h(C)
∞

)
= 1

2

(
vx h(u)

CE , h(C)
∞

)

= − σC P

2mvm
+ 1

2

(
vx h(u)

CE , h(C)
CE

)
, (81)

�t
Cu = ((

T̂ g(C), h(u)
)) − 1

2

(
T̂ vx h(C)

∞ , h(u)
∞

)

= −((
g(C), h(u)

)) − 1

2

(
vx h(C)

∞ , h(u)
CE

)

= J (u)
s


+ σC P

2mvm
− 1

2

(
vx h(C)

CE , h(u)
CE

)
, (82)
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where Eqs. (55–57) have been used. So, one can see that the coefficients �uT and
�uC change their own sign at time reversal, i.e.

�uT = −�t
uT, �uC = −�t

uC, (83)

while the coupled coefficients �Tu and �Cu neither change nor maintain their own
sign. So, instead of the usual form (3) here we have to use the form (4) to express
the OCRR, i.e.

�t
uT = �t

Tu, �t
uC = �t

Cu . (84)

Substituting the time inverse coefficients given by Eqs. (79–82) into (84) we
obtain

Q(u)
s

kTeq
=

(
vx h(T)

CE , h(u)
CE

)
− σT

P

mvm
, (85)

J (u)
s


=

(
vx h(u)

CE , h(C)
CE

)
− σC

P

mvm
, (86)

or

Q(u)
s

Pvm
= kTeq

Pvm

(
vx h(T)

CE , h(u)
CE

)
− 1

2
σT, (87)

J (u)
s

neqvm
= kTeq

Pvm

(
vx h(u)

CE , h(C)
CE

)
− 1

2
σC. (88)

Equation (87) has the same form that Eq. (72) of Ref. 15. It allows us to
calculate the thermal slip coefficient σT knowing the peculiar heat flux Q(u)

s in
the Knudsen layer caused by the velocity gradient Xu . In the particular case of
monoatomic gases and diffuse-specular gas-surface interaction this equality was
obtained in Ref. 19 using the McCormack model equation.(20)

Equation (88) allows us to calculate the diffuse slip coefficient σC via the
surface diffusion flux J (u)

s caused by the velocity gradient Xu .
Usually, these coefficients are calculated separately, see e.g. Refs. 21–25. Nu-

merical calculations of the slip coefficients for gaseous mixtures is a difficult task,
because the number of parameters determining their numerical values is large, i.e.
molar concentration, molecular mass ratio, molecular size ratio. If one assumes a
non-diffuse gas-surface interaction one should consider several additional param-
eters like the accommodation coefficients of each species. The equalities (87) and
(88) allow us to reduce significantly the computational efforts if one needs all slip
coefficients σP, σT and σC. Namely, one solves just one problem corresponding to
the thermodynamic force Xu . This solution provides the viscous slip coefficient σP

and the quantities Q(u)
s and J (u)

s . Then using Eqs. (87) and (88) one immediately
obtains σT and σC, respectively. On the other hand, if one calculates the three
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coefficients separately, Eqs. (87) and (88) can be used as an additional criterion of
numerical accuracy.

6. CONCLUDING REMARKS

The Onsager-Casimir reciprocal relations for gaseous mixtures were derived
from the linearized Boltzmann equation and gas-surface interaction law. It was
shown that the reversibility of the micro-processes is a necessary and sufficient
condition for fulfilment of the reciprocal relations for weakly non-equilibrium
systems. The present approach does not distinguish the thermodynamic forces
that change their own sign and those that do not change. However, the time
reversed kinetic coefficients are introduced, which allow us to write down the
reciprocal relations in the form of equality between such coefficients. It was given
an example, for which the previously elaborated formalism is not valid because
the thermodynamic fluxes are neither odd nor even with respect to time reversal.
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